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Abstract
We consider dynamics generated by Hamiltonians with three degrees of
freedom and symmetries. It is shown that locally, away from a possible saddle
equilibrium, some codimension-1 invariant manifold may exist. They are
stable/unstable manifolds of a codimension-2 hyperbolic invariant manifold.
This structure appears when some periodic orbits constitutive of the Arnold
web have bifurcated and become linearly unstable. This result generalizes the
existence of normally hyperbolic invariant manifolds and their codimension-1
stable/unstable manifolds in the vicinity of an unstable ⊗ (stable)2 equilibrium
point.

PACS numbers: 45.20.Jj, 05.45.−a, 82.20.Db

1. Introduction

Manifolds that are invariant under the flow are of special importance for the study of phase space
structure associated with a Hamiltonian H. Among the various possible invariant manifolds,
some are of special interest: those having a codimension 1 (codim 1) in the full phase space or in
the energy level. They are the largest invariant structures possible and as such, they determine
to some extent transport in phase space [1]. They also constitute, at least locally, separatrices in
phase space which are generalizations of the usual separatrices of unstable equilibrium points
in one degree of freedom (1-DOF) Hamiltonians. For n > 2 DOF Hamiltonian dynamics,
the overall geometry of invariant objects in phase space is vastly more complicated and less
known than for 2-DOF Hamiltonians. Although several specific n-DOF codim-1 invariant
manifolds have been known for a long time, there has recently been a renewed interest in those
invariant manifolds associated with transition states.

The geometry of phase space has been elucidated in the neighbourhood of a certain class
of equilibrium points P: ∇H(P ) = 0, with linear stability of the type saddle ⊗ (centre)n−1
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[2, 3]. These equilibrium points generate centre and stable/unstable manifolds resulting in a
general yet algorithmic construction of normally hyperbolic invariant manifolds (NHIM) and
transition states, that extend into the non-linear regime. NHIMs are codim 2 in phase space,
while stable and unstable manifolds of NHIMs are codim 1. They act as impenetrable barriers
in phase space. Also, NHIMs and their stable/unstable manifolds are the support of transition
states that act as gates connecting disjoint regions of phase space. The importance of those
multi-dimensional phase space transition states has been underlined and recently used in many
areas of physics and astronomy [4–7].

As stated, the NHIM and the associated transition states (TS) structures have been proved
to exist only in the vicinity of saddle ⊗ (centre)n−1 equilibrium points. No general analogous
result exists in the neighbourhood of a (centre)n equilibrium point, in the vicinity of which
Arnold web structure is supposed to exist [8, 9].

In this letter, I wish to show that under certain restrictive conditions at least, other large
invariant unstable structures exist. These hyperbolic invariant manifolds are codim 2 and have
in analogy with NHIMs stable and unstable manifolds, of codim 1. Whether or not these
structures support transition seems to depend on some stability analysis that will be presented.

2. Separatrices and invariant manifolds

To begin with, let us recall what the situation is for 2-DOF Hamiltonian, which was elucidated
some time ago [10, 11]. At an energy superior to that of a stable ⊗ unstable equilibrium point
P, there exists a periodic orbit named PODS (for periodic orbit dividing surface) which is
unstable. The linearized Hamiltonian in the neighbourhood of such an orbit may be written
as [12]

2H = 2ωI + p2 − κ2q2 (1)

with κ2 real and I, the action of the periodic orbit, period 2π/ω and p, q coordinates normal to
it. Let us emphasize that this linearized Hamiltonian is the same as the linearized Hamiltonian
proposed for NHIMs [2] and that the PODS is direct hyperbolic necessarily. That is, the
eigenvalues of the monodromy matrix of the PODS are real and positive. However, it was
shown that other types of PODS may also exist, which are not in the vicinity of stable ⊗
unstable equilibrium points. These PODS may be either direct or inverse hyperbolic, with
either real positive or real negative eigenvalues of the monodromy matrix. There seems to
exist no closed real form of inverse hyperbolic quadratic Hamiltonian, but it could be written
as equation (1), with κ2 complex. Let us recall that in the neighbourhood of a T-periodic
inverse hyperbolic periodic orbit, motion is 2T -periodic, with a winding number of 1 (Möbius
strip topology) [12–14].

In the chemical literature, direct hyperbolic PODS have been named ‘repulsive PODS’,
while inverse hyperbolic PODS have been named ‘attractive PODS’. They organize phase
space in a fairly different way, that was described in detail in [15, 16].

It is very tempting to try to extend these ideas to n > 2 degree of freedom Hamiltonians.
As stated in the beginning of this letter, this had been possible in the vicinity of some
equilibrium points P. Let us assume that H(P ) = E = 0 (resetting the origin of energy).
Then for 0 < E < E, the closure of the Lyapunov stable periodic orbits (n − 2 times stable,
once unstable) constitutes the centre manifold WC(P ) of P [2, 17, 18]. At each energy level
E, the NHIM is defined as

NHIM: WC(P ) ∩ (H = E) 0 < E < E. (2)
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Figure 1. General scheme of the linearized dynamics. (q, p) denotes collectively the bath
coordinates and momenta, (pξ , ξ), the reaction coordinate and momentum. P is the equilibrium
point. C, U, S are respectively centre, unstable, stable manifolds of the object indicated in their
respective indices.

The dimension of WC(P ) is D(WC) = 2n − 2; the NHIM has thus D = 2n − 3 and its
stable and unstable manifolds are codim 1, as stated. In a nutshell, the situation is depicted in
figure 1.

Let us write down, for n = 3 degrees of freedom, the linearized Hamiltonian that supports
this whole structure [2, 17]. From this formula, it will be easier to understand where it
may be possible to extend those ideas, and where not. Let H = H(pi, qi) be the 3-DOF
Hamiltonian and the equilibrium point P be at coordinates pi = qi = 0, i = 1, . . . , 3 with
H(pi = 0, qi = 0) = 0. We linearize H in the vicinity of P and get

2H = p2
1 + ω2

1q
2
1 + p2

2 + ω2
2q

2
2 + p2

ξ − κ2ξ 2 (3)

with ω1, ω2, κ ∈ R
∗ and ξ, pξ ≡ q3, p3. In the chemical literature, ξ is termed the reaction

coordinate. It is possible to define with help of equation (3) the NHIM as

pξ = ξ = 0 (4)

2E = 2H = p2
1 + ω2

1q
2
1 + p2

2 + ω2
2q

2
2 (5)

ω1I1 + ω2I2 = E 0 � ω1I1 ω2I2 � E. (6)

Equation (6) defines the actions I1,2 of the two harmonic oscillators. It may also be thought as

ω1I1 = (1 − µ)E ω2I2 = µE 0 � µ � 1. (7)

This whole idea may be summarized in the following scheme, figure 2(a). It indicates that
the structure of the NHIM is in fact an S3 sphere, foliated by the full family of tori compatible
with the energy conservation rule, equation (6). Dimension of this S3 sphere is 3, leading to
stable/unstable manifolds Wu,s(S3) attached to each point of the sphere by

pξ = ±κξ H = E. (8)

Dimension of Wu,s(S3) is 4, codim 1 in the five-dimensional energy level H = E.
It is the very fact that (7) is fulfilled for the whole segment 0 � µ � 1 that leads to the

full 3-sphere, hence to codim-1 stable and unstable manifolds acting as separatrices. Now, let
us try to see and understand what happens away from a saddle equilibrium point, in a potential
well. It is well known that in the vicinity of a stable equilibrium point, the situation is totally
different. We have a two-parameter family of T3 tori that foliate phase space, but no structure
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Figure 2. Schemes corresponding to equation (7)—(a), equation (12)—(b) and equation (16)—(c).
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Figure 3. A view of the 3-DOF energy function, when motion is fully stable. The Arnold web is
schematized as lines of resonances.

is larger than codim 2:

2E = 2H = p2
1 + ω2

1q
2
1 + p2

2 + ω2
2q

2
2 + p2

3 + ω2
3q

3
2 (9)

ω1I1 + ω2I2 + ω3I3 = E. (10)

Equation (6) defines a plane in the three-dimensional space of actions; on that plane resonances
may occur, as well as Arnold diffusion, see figure 3.

Let us imagine now that one of the periodic orbits (POs) that constitute the tori undergoes
a bifurcation at some energy E∗ and becomes unstable beyond, for E > E∗. Then the
Hamiltonian linearized in the vicinity of that PO reads [12, 18, 19]

2E = 2H = I1 + p2
2 + ω2

2q
2
2 + p2

3 − κ2q2
3 . (11)

Here, I1 is the action associated with the PO, p2, q2 are coordinates associated with the
modulus 1 eigenvalues of the monodromy matrix of the PO and p3, q3 are associated with
eigenvalues modulus different from 1 (direct hyperbolic or inverse hyperbolic eigenvalues).
We have the structure of what is called in the literature a ‘whiskered torus’ TW [1]. The
stable and unstable manifolds p3 = ±κq3 are codim-2 in the energy level and do not act as
separatrices, as is well known. We may think of the whiskered torus as

I1 = (1 − µ)E I2 = µE µ = µPO (12)
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Figure 4. A view of the quasi-regular region at the transition state (TS) [4] and the new HIM in
the potential well. x is some collective coordinate, V some potential-like function.

with the sole but crucial difference that the whole S3 sphere, described by parameter µ is
reduced to a single torus, at µ = µPO, figure 2(b).

3. Symmetries: new hyperbolic invariant manifolds

To summarize, in order to devise again large invariant manifolds, we have to find a way to
recover a whole part of the S3 sphere. In order to have parts of this sphere and codim-1
stable and unstable manifold, it is necessary to recover—at least partly—equations (6)–(7).
While this does not seem possible in generic circumstances, it is possible to recover parts of
the S3 sphere in cases of additional symmetries. Without symmetry, at a given energy, only
isolated particular actions give rise to periodic motion, hence isolated whiskered torus. If there
is a continuous, one-parameter family of symmetry—let µ be this parameter—then we may
recover the situation of a hyperbolic invariant manifold of codim 2.

Let us consider the following type of 3-DOF polynomial Hamiltonian:

H = 1

2

∑

i=1,2,3

(
p2

i + ω2
i q

2
i

)
+ Vc1(q1; q2, q3) + Vc2(q2, q3). (13)

We suppose the following properties for H:

(i) Symmetries : q1 ↔ −q1, q3 ↔ −q3, but q2 ↔ −q2 need not be true.
(ii) Couplings are such that Vc1(q1; q2, q3) = 0 if q1 = 0 and Vc2(q2, q3) = 0 if q2 = 0 or

q3 = 0.
(iii) The two preceding points entail that �1

.= q1 = p1 = q2 = q2 = 0 is a periodic orbit, as
well as �2

.= q1 = p1 = q3 = q3 = 0.
(iv) The largest exponent of q2 in Vc1 or Vc2 is M. M odd allows for unbound motion.

Point (iii) is the key point: it allows us to recover a parameter µ covering a non-zero
segment. Nearby the fully stable equilibrium point pi = qi = 0, we have the usual structure
of tori foliating the phase space, with possible resonances. As soon as one (and one only)
of the POs �i undergoes a change of stability, we are in a situation that is similar (but not
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identical) to equations (5)–(7). Let us write the general linear Hamiltonian describing this
situation. One of the periodic orbits �1, �2, say �1, has the following non-trivial eigenvalues
of its monodromy matrix [13]: λ1,2 = k, 1/k with |k| > 1, |λ3,4| = 1, λ3,4 = α ± iβ, with
α ∈ R, β ∈ R

∗. Note that k > 1 corresponds to a direct hyperbolic stability, k < −1 to an
inverse hyperbolic stability. The possibility of k < −1, analogous to the attractive PODS for
2-DOF systems, is new with respect to transition state type of NHIMs, where k > 1 always.

In the vicinity of �1, we may write the linearized Hamiltonian as [18, 19] :

2H = ω1I (�1;µ) + h(p3, q3;µ) + p2
2 − κ2q2

2 (14)

since the unstable/stable manifolds are contained in the q2/p2 hyperplane. For small q3, we
have

h(p3, q3;µ) = ω2I (�2;µ) (15)

ω1I1 = (1 − µ)E ω2I2 = µE 0 � µ0 � µ � µ1 � 1. (16)

Contrary to (7), in (16), µ0 �= 0 and µ1 �= 1, usually. A very schematic view of the new
situation is presented in figure 2(c) and figure 4.

In principle, equations (13)–(16) complete the argument. The new invariant manifold, let
us call it a HIM (for hyperbolic invariant manifold), is defined as x = px = 0, in a formally
completely analogous way to [2] and to (3). As in [2, 17], the HIM has codim 2, and its
stable/unstable manifolds, codim 1 in the energy level. However, the interpretation of an HIM
is different in two key points from the NHIM of [2, 17]:

(i) �1 or �2 need not be direct hyperbolic. Consequently, even linearized (local) phase
space structure nearby the invariant manifold may be different from the structure nearby
NHIMs. �1 or �2 need not define transition states.

(ii) What the full consequences of (16) are, where the HIM and its stable/unstable manifolds
have borders, is still unclear and justifies more investigations.

4. Conclusion

It may seem that Hamiltonian (13) is quite particular. Let us first keep in mind that (13) is
only an expansion of a Hamiltonian nearby a pre-determined periodic orbit. Also, it must
be underlined that this type of Hamiltonian is very commonplace in the realm of chemical
physics. It could very well be a model that describes the coupling between three vibrational
modes with a local to normal transition (bound motion, M even). With M odd—unbound
motion possible for q2 < 0—it could describe the dissociation of an excited complex. Under
certain circumstances, it may be that the three-body problem with forces other than Keplerian
enters into this category, as the existence of attractive PODS seems to imply. A detailed
numerical investigation of potential of (13) is currently underway.

We have shown that in the potential well of a n > 2 DOF Hamiltonian, there may
exist under symmetry constraints new kinds of codim-1 invariant manifolds. While the actual
interpretation of the potential presented is unimportant, the properties of HIMs as well as those
of NHIMs are related to actual dynamics [20–22] and possibly to semi-classical analysis. Also,
non-linear analysis, based on the same premises as the NHIM theory [13, 23] has to be pursued.
Being large invariant manifolds, the stable and unstable manifolds of HIM and NHIM act at
least locally as separatrices. Their stretching and folding may determine some of the fractal
structure associated with high dimensional chaotic scattering.
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