Local separatrices for Hamiltonians with symmetries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 37 L143
(http://iopscience.iop.org/0305-4470/37/12/L04)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 02/06/2010 at 17:51

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Local separatrices for Hamiltonians with symmetries

L Wiesenfeld

Laboratoire de Spectrométrie Physique, Université Joseph-Fourier-Grenoble, F-38402 Saint-Martin-d'Hères-Cedex, France
and
Laboratoire d'Astrophysique de l'Observatoire de Grenoble, Université Joseph-Fourier-Grenoble, F-38051, Grenoble Cedex 9, France

E-mail: laurent.wiesenfeld@ujf-grenoble.fr
Received 22 January 2004
Published 10 March 2004
Online at stacks.iop.org/JPhysA/37/L143 (DOI: 10.1088/0305-4470/37/12/L04)

Abstract

We consider dynamics generated by Hamiltonians with three degrees of freedom and symmetries. It is shown that locally, away from a possible saddle equilibrium, some codimension-1 invariant manifold may exist. They are stable/unstable manifolds of a codimension-2 hyperbolic invariant manifold. This structure appears when some periodic orbits constitutive of the Arnold web have bifurcated and become linearly unstable. This result generalizes the existence of normally hyperbolic invariant manifolds and their codimension-1 stable/unstable manifolds in the vicinity of an unstable $\otimes(\text { stable })^{2}$ equilibrium point.

PACS numbers: 45.20.Jj, 05.45.-a, 82.20.Db

1. Introduction

Manifolds that are invariant under the flow are of special importance for the study of phase space structure associated with a Hamiltonian H. Among the various possible invariant manifolds, some are of special interest: those having a codimension 1 (codim 1) in the full phase space or in the energy level. They are the largest invariant structures possible and as such, they determine to some extent transport in phase space [1]. They also constitute, at least locally, separatrices in phase space which are generalizations of the usual separatrices of unstable equilibrium points in one degree of freedom (1-DOF) Hamiltonians. For $n>2$ DOF Hamiltonian dynamics, the overall geometry of invariant objects in phase space is vastly more complicated and less known than for 2-DOF Hamiltonians. Although several specific n-DOF codim- 1 invariant manifolds have been known for a long time, there has recently been a renewed interest in those invariant manifolds associated with transition states.

The geometry of phase space has been elucidated in the neighbourhood of a certain class of equilibrium points $P: \nabla H(P)=0$, with linear stability of the type saddle $\otimes(\text { centre })^{n-1}$
$[2,3]$. These equilibrium points generate centre and stable/unstable manifolds resulting in a general yet algorithmic construction of normally hyperbolic invariant manifolds (NHIM) and transition states, that extend into the non-linear regime. NHIMs are codim 2 in phase space, while stable and unstable manifolds of NHIMs are codim 1. They act as impenetrable barriers in phase space. Also, NHIMs and their stable/unstable manifolds are the support of transition states that act as gates connecting disjoint regions of phase space. The importance of those multi-dimensional phase space transition states has been underlined and recently used in many areas of physics and astronomy [4-7].

As stated, the NHIM and the associated transition states (TS) structures have been proved to exist only in the vicinity of saddle $\otimes(\text { centre })^{n-1}$ equilibrium points. No general analogous result exists in the neighbourhood of a (centre) ${ }^{n}$ equilibrium point, in the vicinity of which Arnold web structure is supposed to exist [8, 9].

In this letter, I wish to show that under certain restrictive conditions at least, other large invariant unstable structures exist. These hyperbolic invariant manifolds are codim 2 and have in analogy with NHIMs stable and unstable manifolds, of codim 1. Whether or not these structures support transition seems to depend on some stability analysis that will be presented.

2. Separatrices and invariant manifolds

To begin with, let us recall what the situation is for 2-DOF Hamiltonian, which was elucidated some time ago $[10,11]$. At an energy superior to that of a stable \otimes unstable equilibrium point P, there exists a periodic orbit named PODS (for periodic orbit dividing surface) which is unstable. The linearized Hamiltonian in the neighbourhood of such an orbit may be written as [12]

$$
\begin{equation*}
2 H=2 \omega I+p^{2}-\kappa^{2} q^{2} \tag{1}
\end{equation*}
$$

with κ^{2} real and I, the action of the periodic orbit, period $2 \pi / \omega$ and p, q coordinates normal to it. Let us emphasize that this linearized Hamiltonian is the same as the linearized Hamiltonian proposed for NHIMs [2] and that the PODS is direct hyperbolic necessarily. That is, the eigenvalues of the monodromy matrix of the PODS are real and positive. However, it was shown that other types of PODS may also exist, which are not in the vicinity of stable \otimes unstable equilibrium points. These PODS may be either direct or inverse hyperbolic, with either real positive or real negative eigenvalues of the monodromy matrix. There seems to exist no closed real form of inverse hyperbolic quadratic Hamiltonian, but it could be written as equation (1), with κ^{2} complex. Let us recall that in the neighbourhood of a T-periodic inverse hyperbolic periodic orbit, motion is $2 T$-periodic, with a winding number of 1 (Möbius strip topology) [12-14].

In the chemical literature, direct hyperbolic PODS have been named 'repulsive PODS', while inverse hyperbolic PODS have been named 'attractive PODS'. They organize phase space in a fairly different way, that was described in detail in [15, 16].

It is very tempting to try to extend these ideas to $n>2$ degree of freedom Hamiltonians. As stated in the beginning of this letter, this had been possible in the vicinity of some equilibrium points P. Let us assume that $H(P)=E=0$ (resetting the origin of energy). Then for $0<E<\bar{E}$, the closure of the Lyapunov stable periodic orbits ($n-2$ times stable, once unstable) constitutes the centre manifold $\mathcal{W}^{C}(P)$ of P [2,17,18]. At each energy level E, the NHIM is defined as

$$
\begin{equation*}
\text { NHIM: } \quad \mathcal{W}^{C}(P) \cap(H=E) \quad 0<E<\bar{E} \tag{2}
\end{equation*}
$$

Figure 1. General scheme of the linearized dynamics. (q, p) denotes collectively the bath coordinates and momenta, $\left(p_{\xi}, \xi\right)$, the reaction coordinate and momentum. P is the equilibrium point. C, U, S are respectively centre, unstable, stable manifolds of the object indicated in their respective indices.

The dimension of $\mathcal{W}^{C}(P)$ is $D\left(\mathcal{W}^{C}\right)=2 n-2$; the NHIM has thus $D=2 n-3$ and its stable and unstable manifolds are codim 1, as stated. In a nutshell, the situation is depicted in figure 1.

Let us write down, for $n=3$ degrees of freedom, the linearized Hamiltonian that supports this whole structure [2, 17]. From this formula, it will be easier to understand where it may be possible to extend those ideas, and where not. Let $H=H\left(p_{i}, q_{i}\right)$ be the 3-DOF Hamiltonian and the equilibrium point P be at coordinates $p_{i}=q_{i}=0, i=1, \ldots, 3$ with $H\left(p_{i}=0, q_{i}=0\right)=0$. We linearize H in the vicinity of P and get

$$
\begin{equation*}
2 H=p_{1}^{2}+\omega_{1}^{2} q_{1}^{2}+p_{2}^{2}+\omega_{2}^{2} q_{2}^{2}+p_{\xi}^{2}-\kappa^{2} \xi^{2} \tag{3}
\end{equation*}
$$

with $\omega_{1}, \omega_{2}, \kappa \in \mathbb{R}^{*}$ and $\xi, p_{\xi} \equiv q_{3}, p_{3}$. In the chemical literature, ξ is termed the reaction coordinate. It is possible to define with help of equation (3) the NHIM as

$$
\begin{align*}
& p_{\xi}=\xi=0 \tag{4}\\
& 2 E=2 H=p_{1}^{2}+\omega_{1}^{2} q_{1}^{2}+p_{2}^{2}+\omega_{2}^{2} q_{2}^{2} \tag{5}\\
& \omega_{1} I_{1}+\omega_{2} I_{2}=E \quad 0 \leqslant \omega_{1} I_{1} \quad \omega_{2} I_{2} \leqslant E \tag{6}
\end{align*}
$$

Equation (6) defines the actions $I_{1,2}$ of the two harmonic oscillators. It may also be thought as

$$
\begin{equation*}
\omega_{1} I_{1}=(1-\mu) E \quad \omega_{2} I_{2}=\mu E \quad 0 \leqslant \mu \leqslant 1 \tag{7}
\end{equation*}
$$

This whole idea may be summarized in the following scheme, figure 2(a). It indicates that the structure of the NHIM is in fact an S_{3} sphere, foliated by the full family of tori compatible with the energy conservation rule, equation (6). Dimension of this S_{3} sphere is 3, leading to stable/unstable manifolds $\mathcal{W}^{u, s}\left(S_{3}\right)$ attached to each point of the sphere by

$$
\begin{equation*}
p_{\xi}= \pm \kappa \xi \quad H=E \tag{8}
\end{equation*}
$$

Dimension of $\mathcal{W}^{u, s}\left(S_{3}\right)$ is 4, codim 1 in the five-dimensional energy level $H=E$.
It is the very fact that (7) is fulfilled for the whole segment $0 \leqslant \mu \leqslant 1$ that leads to the full 3 -sphere, hence to codim- 1 stable and unstable manifolds acting as separatrices. Now, let us try to see and understand what happens away from a saddle equilibrium point, in a potential well. It is well known that in the vicinity of a stable equilibrium point, the situation is totally different. We have a two-parameter family of T_{3} tori that foliate phase space, but no structure

Figure 2. Schemes corresponding to equation (7)—(a), equation (12)-(b) and equation (16)—(c).

Figure 3. A view of the 3-DOF energy function, when motion is fully stable. The Arnold web is schematized as lines of resonances.
is larger than codim 2:

$$
\begin{align*}
& 2 E=2 H=p_{1}^{2}+\omega_{1}^{2} q_{1}^{2}+p_{2}^{2}+\omega_{2}^{2} q_{2}^{2}+p_{3}^{2}+\omega_{3}^{2} q_{2}^{3} \tag{9}\\
& \omega_{1} I_{1}+\omega_{2} I_{2}+\omega_{3} I_{3}=E . \tag{10}
\end{align*}
$$

Equation (6) defines a plane in the three-dimensional space of actions; on that plane resonances may occur, as well as Arnold diffusion, see figure 3.

Let us imagine now that one of the periodic orbits (POs) that constitute the tori undergoes a bifurcation at some energy E^{*} and becomes unstable beyond, for $E>E^{*}$. Then the Hamiltonian linearized in the vicinity of that PO reads [12, 18, 19]

$$
\begin{equation*}
2 E=2 H=I_{1}+p_{2}^{2}+\omega_{2}^{2} q_{2}^{2}+p_{3}^{2}-\kappa^{2} q_{3}^{2} \tag{11}
\end{equation*}
$$

Here, I_{1} is the action associated with the $\mathrm{PO}, p_{2}, q_{2}$ are coordinates associated with the modulus 1 eigenvalues of the monodromy matrix of the PO and p_{3}, q_{3} are associated with eigenvalues modulus different from 1 (direct hyperbolic or inverse hyperbolic eigenvalues). We have the structure of what is called in the literature a 'whiskered torus' T_{W} [1]. The stable and unstable manifolds $p_{3}= \pm \kappa q_{3}$ are codim-2 in the energy level and do not act as separatrices, as is well known. We may think of the whiskered torus as

$$
\begin{equation*}
I_{1}=(1-\mu) E \quad I_{2}=\mu E \quad \mu=\mu_{\mathrm{PO}} \tag{12}
\end{equation*}
$$

Figure 4. A view of the quasi-regular region at the transition state (TS) [4] and the new HIM in the potential well. x is some collective coordinate, V some potential-like function.
with the sole but crucial difference that the whole S_{3} sphere, described by parameter μ is reduced to a single torus, at $\mu=\mu_{\mathrm{PO}}$, figure $2(b)$.

3. Symmetries: new hyperbolic invariant manifolds

To summarize, in order to devise again large invariant manifolds, we have to find a way to recover a whole part of the S_{3} sphere. In order to have parts of this sphere and codim-1 stable and unstable manifold, it is necessary to recover-at least partly-equations (6)-(7). While this does not seem possible in generic circumstances, it is possible to recover parts of the S_{3} sphere in cases of additional symmetries. Without symmetry, at a given energy, only isolated particular actions give rise to periodic motion, hence isolated whiskered torus. If there is a continuous, one-parameter family of symmetry-let μ be this parameter-then we may recover the situation of a hyperbolic invariant manifold of codim 2.

Let us consider the following type of 3-DOF polynomial Hamiltonian:

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i=1,2,3}\left(p_{i}^{2}+\omega_{i}^{2} q_{i}^{2}\right)+V_{\mathrm{c} 1}\left(q_{1} ; q_{2}, q_{3}\right)+V_{\mathrm{c} 2}\left(q_{2}, q_{3}\right) \tag{13}
\end{equation*}
$$

We suppose the following properties for H :
(i) Symmetries : $q_{1} \leftrightarrow-q_{1}, q_{3} \leftrightarrow-q_{3}$, but $q_{2} \leftrightarrow-q_{2}$ need not be true.
(ii) Couplings are such that $V_{\mathrm{c} 1}\left(q_{1} ; q_{2}, q_{3}\right)=0$ if $q_{1}=0$ and $V_{\mathrm{c} 2}\left(q_{2}, q_{3}\right)=0$ if $q_{2}=0$ or $q_{3}=0$.
(iii) The two preceding points entail that $\Gamma_{1} \doteq q_{1}=p_{1}=q_{2}=q_{2}=0$ is a periodic orbit, as well as $\Gamma_{2} \doteq q_{1}=p_{1}=q_{3}=q_{3}=0$.
(iv) The largest exponent of q_{2} in $V_{\mathrm{c} 1}$ or $V_{\mathrm{c} 2}$ is $M . M$ odd allows for unbound motion.

Point (iii) is the key point: it allows us to recover a parameter μ covering a non-zero segment. Nearby the fully stable equilibrium point $p_{i}=q_{i}=0$, we have the usual structure of tori foliating the phase space, with possible resonances. As soon as one (and one only) of the POs Γ_{i} undergoes a change of stability, we are in a situation that is similar (but not
identical) to equations (5)-(7). Let us write the general linear Hamiltonian describing this situation. One of the periodic orbits Γ_{1}, Γ_{2}, say Γ_{1}, has the following non-trivial eigenvalues of its monodromy matrix [13]: $\lambda_{1,2}=k, 1 / k$ with $|k|>1,\left|\lambda_{3,4}\right|=1, \lambda_{3,4}=\alpha \pm \mathrm{i} \beta$, with $\alpha \in \mathbb{R}, \beta \in \mathbb{R}^{*}$. Note that $k>1$ corresponds to a direct hyperbolic stability, $k<-1$ to an inverse hyperbolic stability. The possibility of $k<-1$, analogous to the attractive PODS for 2-DOF systems, is new with respect to transition state type of NHIMs, where $k>1$ always.

In the vicinity of Γ_{1}, we may write the linearized Hamiltonian as [18, 19]:

$$
\begin{equation*}
2 H=\omega_{1} I\left(\Gamma_{1} ; \mu\right)+h\left(p_{3}, q_{3} ; \mu\right)+p_{2}^{2}-\kappa^{2} q_{2}^{2} \tag{14}
\end{equation*}
$$

since the unstable/stable manifolds are contained in the q_{2} / p_{2} hyperplane. For small q_{3}, we have

$$
\begin{align*}
& h\left(p_{3}, q_{3} ; \mu\right)=\omega_{2} I\left(\Gamma_{2} ; \mu\right) \tag{15}\\
& \omega_{1} I_{1}=(1-\mu) E \quad \omega_{2} I_{2}=\mu E \quad 0 \leqslant \mu_{0} \leqslant \mu \leqslant \mu_{1} \leqslant 1 \tag{16}
\end{align*}
$$

Contrary to (7), in (16), $\mu_{0} \neq 0$ and $\mu_{1} \neq 1$, usually. A very schematic view of the new situation is presented in figure $2(c)$ and figure 4.

In principle, equations (13)-(16) complete the argument. The new invariant manifold, let us call it a HIM (for hyperbolic invariant manifold), is defined as $x=p_{x}=0$, in a formally completely analogous way to [2] and to (3). As in [2, 17], the HIM has codim 2, and its stable/unstable manifolds, codim 1 in the energy level. However, the interpretation of an HIM is different in two key points from the NHIM of [2, 17]:
(i) Γ_{1} or Γ_{2} need not be direct hyperbolic. Consequently, even linearized (local) phase space structure nearby the invariant manifold may be different from the structure nearby NHIMs. Γ_{1} or Γ_{2} need not define transition states.
(ii) What the full consequences of (16) are, where the HIM and its stable/unstable manifolds have borders, is still unclear and justifies more investigations.

4. Conclusion

It may seem that Hamiltonian (13) is quite particular. Let us first keep in mind that (13) is only an expansion of a Hamiltonian nearby a pre-determined periodic orbit. Also, it must be underlined that this type of Hamiltonian is very commonplace in the realm of chemical physics. It could very well be a model that describes the coupling between three vibrational modes with a local to normal transition (bound motion, M even). With M odd-unbound motion possible for $q_{2}<0$-it could describe the dissociation of an excited complex. Under certain circumstances, it may be that the three-body problem with forces other than Keplerian enters into this category, as the existence of attractive PODS seems to imply. A detailed numerical investigation of potential of (13) is currently underway.

We have shown that in the potential well of a $n>2$ DOF Hamiltonian, there may exist under symmetry constraints new kinds of codim-1 invariant manifolds. While the actual interpretation of the potential presented is unimportant, the properties of HIMs as well as those of NHIMs are related to actual dynamics [20-22] and possibly to semi-classical analysis. Also, non-linear analysis, based on the same premises as the NHIM theory $[13,23]$ has to be pursued. Being large invariant manifolds, the stable and unstable manifolds of HIM and NHIM act at least locally as separatrices. Their stretching and folding may determine some of the fractal structure associated with high dimensional chaotic scattering.

Acknowledgments

I wish to thank M Toda for a decisive impetus and T Komatsuzaki for a warm welcome and discussions. Part of this work was performed at Kobe University, with the support of the 21st century COE of Origin and Evolution of Planetary Systems (MEXT, Japan). Laboratoire de Spectrométrie Physique and Laboratoire d'Astrophysique are mixed research units at CNRS/Joseph-Fourier University.

References

[1] Wiggins S 1992 Chaotic Transport in Dynamical Systems (Berlin: Springer)
[2] Wiggins S, Wiesenfeld L, Jaffé C and Uzer T 2001 Phys. Rev. Lett. 865478
[3] Koon W S, Lo M, Marsden J E and Ross S 2002 Contemp. Math. 292129
Koon W S, Lo M, Marsden J E and Ross S 2001 Celest. Mech. Dyn. Astron 8127
[4] Komatsuzaki T and Berry R S 2002 Adv. Chem. Phys. 12379
[5] Wiesenfeld L, Faure A and Johann T 2003 J. Phys. B: At. Mol. Opt. Phys. 361319
[6] Schön J C, Wevers M A C and Jansen M 2003 J. Phys.: Condens. Matter 155479
[7] Jaffe C, Ross S D, Lo M W, Marsden J, Farrelly D and Uzer T 2002 Phys. Rev. Lett. 89011101
[8] Arnol'd V I 1978 Mathematical Methods of Classical Mechanics (New York: Springer)
[9] Toda M 2002 Adv. Chem. Phys. 123153
[10] Pollak E, Child M S and Pechukas P 1979 J. Chem. Phys. 721669
[11] Kovács Z and Wiesenfeld L 1995 Phys. Rev. E 515476
[12] Sugita A 2001 Ann. Phys. 288277
[13] Meyer K R and Hall G R 1991 Introduction to Hamiltonian Dynamical Systems and the N-Body Problem (Berlin: Springer)
[14] Pletyukhov M and Brack M 2003 J. Phys. A: Math. Gen. 369449
[15] Pollak E and Child M S 1980 J. Chem. Phys. 734373
[16] Wadi H and Wiesenfeld L 1997 Phys. Rev. E 55271
[17] Uzer T, Jaffé C, Palacián J, P Yanguas P and Wiggins S 2002 Nonlinearity 15957
[18] Moser J 1958 Commun. Pure Appl. Math. 11257
[19] Jorba Á and Villanueva J 1997 Nonlinearity 10783
[20] Kovács Z and Wiesenfeld L 2001 Phys. Rev. E 63056207
[21] Sweet D, Ott E and Yorke J A 1999 Nature 399315
[22] Toda M 1995 Phys. Rev. Lett. 742670
[23] Kelley Al 1967 J. Diff. Eqns. 3546

